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A model-based approach is applied in the development of a processor designed to passively
monitor an ocean acoustic environment along with its associated variations.  The technique
employs an adaptive, model-based processor embedded in a sequential likelihood detection
scheme.  The trade-off between state-based and innovations-based monitor designs is
discussed, conceptually.  The underlying theory for the innovations-based design is briefly
developed and applied to a simulated data set.

1.  INTRODUCTION

In this paper a model-based approach is applied in the development of a processor
designed to passively monitor a shallow water, ocean acoustic environment along with its
associated variations [1-3]. In order to develop the monitor, we must incorporate our
knowledge about the current ocean environment and its changes as time evolves.  One way to
accomplish this is through models that represent the ocean acoustics coupled with other a
priori information to provide initial parameters for the processor.  The technique employs an
adaptive, model-based processor (MBP) embedded in a sequential likelihood detection scheme
[4,5].  

The ocean acoustic monitor passively “listens” and “learns” whether or not there is a
target in the surveillance volume that is being monitored.  Our approach is to develop a
monitor that first “learns” about its current environment during its initialization phase and
then “listens” for changes from the normal  to declare an anomaly (possibly a target).  This
concept represents the basic philosophy that will be used to construct our monitors or model-
based detectors.  Once an anomaly or change from the normal is detected, the processor can
then proceed to classify the target using a multiple hypothesis scheme and any other target
information available.  

The trade-off between state-based and innovations-based monitor designs is discussed.
The underlying theory for the innovations-based design is briefly discussed and applied to a
simulated data set.  First, we investigate the underlying processor, conceptually to motivate
the subsequent theoretical development and show that there are a number of different



approaches that could be employed to solve the basic detection problem.  Next, we develop
these approaches and show how they can be implemented using the basic MBP.
2.  MODEL-BASED DETECTION

Philosophically, the idea that we pursue in this paper is based on the fact that the
typical goal of the ocean acoustic monitor will be to passively "listen" and "learn" whether or
not there is a target in the surveillance volume that is being monitored.  Clearly, developing
models of various targets and their particular acoustic signatures is desirable, but may not be
practical, or for that matter, even attainable. Therefore, our approach is to develop a monitor
that first "learns" about its current environment during its initialization phase and the 'listens"
for changes from the normal to declare an anomaly (possibly a target).  

In order to develop a "change from normal" monitor, we must incorporate our
knowledge about the current ocean environment and its changes as time evolves.  One way to
accomplish this is through propagation, measurement and noise models which represent the
ocean acoustics, coupled with other information such as sound speed, temperature, salinity
etc. and any historical information available to provide initial parameters for the processor.
Once initialized, the processor should then be adaptive, so it can listen and adjust its
parameters
(slowly) as the environment changes.  Slowly is the key, because as a target enters the
surveillance volume the processor will not be capable of tracking the rapid acoustic changes
created, and therefore the monitor must decide that a change has occurred.  This concept
represents the basic philosophy that will be used to construct the model-based detectors.

The basic objective is to design a robust device capable of providing accurate estimates
of the current environment and a timely detection of the target disturbing that environment.
Suppose we have an L-dimensional vertical sensor array and we obtain a set of narrowband
pressure-field measurements  { } ,L,z Lll 1for)( =p ,  where lz represents the sensor spatial

coordinates and )( lzp represents the snapshot across the array; thus, we represent the overall

measurement process by the model

[ ] )(,)( llll zxz vcp += θ ,          (1)

where [ ]ll θ,xc is the nonlinear pN -measurement vector function made up of the xN -state

vector lx  (modes, rays, etc.) and unknown θN -parameter vector (attenuation, wave numbers,

modal coefficients, etc.) with the additive, zero-mean, white pN -measurement noise vector
)( lzv with corresponding covariance, )( lzRvv representing the measurement uncertainties and

the near-field ambient noise fields. Any changes in the state vector can be used to infer an
abnormal environmental condition, which must be further classified as target or not.  For
instance, if we assume a shallow ocean such that the states are modal functions and that the
target disruption causes changes in the gains or modal coefficient parameters from the normal,
then it is these changes that can be exploited to perform the detection.  These states can be
estimated from the noisy pressure-field snapshots using a model-based scheme [4] with an



ocean acoustic propagation model embedded within its structure as well as measurement and
noise as in Eq. 1.  The output of the MBP are enhanced estimates of the states lx̂ ;

parameters, lθ̂ ; pressure-field, )(ˆ lzp and the corresponding residuals or innovations, )( lze ,

which is the difference between the measured and predicted pressure-fields, that is,
)(ˆ)()( lll zzz ppe −= (2)

where [ ]lll θ,ˆ)(ˆ xcp =z and the corresponding state is given by

[ ] )(ˆ,ˆ)|(ˆ)|(ˆ 1 lllll zèzzzz exKxx += − (3)

with K a weighting (Kalman gain) matrix.  Note that the  notation )|(ˆ 1−ll zzx  implies that the

state estimate at position lz is based on 1−lz  previous measurements.  Equations 2 and 3 are

the primary quantities of concern in the model-based detection schemes.  In our modal
example, the filtered (corrected) state is an estimate of the modal function at position lz ,

while the innovation is the error between the measurement and its prediction at lz .  During

normal monitoring, the processor will adaptively track changes in the ocean environment.
When the model-based processor is tuned, the embedded models "match" the environment, the
state estimates (modes, rays, parameters, etc.) are tracking and the resulting innovations are
zero-mean and white [4].  Should a target enter the surveillance volume it would disrupt the
environment and be reflected in the pressure-field measurement causing the innovations to
become non-zero mean and/or non-white.  

Various model-based monitoring schemes can be developed using this approach.  We
restrict them to two basic classes: (1) model the target and its environment (tracking); or (2)
model the environment and investigate detectable changes due to model mismatch.  Mismatch
in the processor is reflected by variations in the innovations statistics, that is, they become
biased and correlated.  Thus, for the first class, a state-based processor is developed relying
entirely on its ability to accurately track the states of interest, while the second approach
relies on detecting model mismatch when an anomaly occurs causing a change.  We call the
tracking detection schemes, state-based monitors and the change detection schemes,
innovations-based monitors (Fig. 1).  There exists an inverse relationship between state-based
and innovations-based monitors because the former relies on state tracking implying a "tuned"
MBP while the latter relies on mismatch and therefore, an "unturned" processor for detection.
We illustrate this relationship conceptually in Fig. 2 where we see the state estimate under
normal conditions, the presence of a target and then the removal of the target from the
surveillance volume.  The ideal state-based monitor would not only know the target acoustics
(or have an embedded model) but also have some a priori knowledge of the target's track much
like that of an airplane arriving at an airport where it is identified and tracked.  In our case
there will be a time lag when the target first enters the volume (as shown in Fig. 2) because the
tracker cannot instantaneously follow the target, but it eventually catches up.  We show the
corresponding innovations for this track and since the tracker is "tuned" the innovations are
unbiased and white.  For the same scenario we show the innovations-based monitor which is
tuned only to the environment.  With no target present, we see that the innovations are also
zero mean and white, but when the target enters the volume, the innovations become biased
since there is no model of the target included and therefore, we see the "jump".  After the



target exits, the innovations again eventually return to normal.  So we see that the inverse
relationship between the two distinct approaches. State-based monitors are based on tracking
the target with the cost of a significant amount of a- priori target information required, while
innovations-based monitors are based on not tracking and mismatch occurring and the
underlying innovations statistics for the detection.  Next we briefly discuss, the underlying
detection theory for the innovations-based monitor design, since that approach is our primary
concern with the lack of target models.
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Fig. 1:  Model-based detector: MBP, state-based and innovations-based detection schemes.

3. THEORY

In this section we discuss the design of a detector to monitor the performance of the
model-based processor and indicate when the model is no longer adequate or does not track the
measured data.   First, we briefly discuss the required theory.  Once this is accomplished, we
discuss the development of a practical processor and apply it to our simulated data sets.
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Fig. 2:  Conceptual model-based detection showing state-based and innovations-based MBP
outputs (monitor inputs) for normal, tracking and abnormal environments.



When we apply the extended Kalman filter (EKF) to measured array data, we not only
reconstruct the modal/range functions and pressure-field measurements, but also provide a
whitening operation transforming the correlated measurements to the uncorrelated innovations
sequence, )( lze  [6]. It is well known that a necessary and sufficient condition for a Kalman

filter to provide optimal performance is that the innovation sequence is zero-mean and white.
Thus, the innovations sequence is zero-mean and white only when the propagation and
measurement models reflect the true ocean acoustics and noise and the EKF is properly tuned.
Statistical changes in )( lze reflect changes from the normal or expected operation; therefore,

we can utilize these changes to monitor the performance of the propagation model employed
in the processor.   First, we develop the theoretical monitor.  From the insight we gain in its
development, we then investigate a more pragmatic approach and apply it to our shallow
water problem.

Theoretically, it can be shown that when "model mismatch" occurs, the innovations
become non-zero mean and are no longer white; therefore, we must develop a monitor that
decides whether or not the innovations satisfy the required properties, that is, we test the
hypothesis that
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which is a statistical test for the zero-mean and whiteness of the innovations sequence.  Note

that we assume that we know the model error and how to calculate eµ , eeR  a priori.  The

optimal solution to this problem is based on constructing the likelihood ratio for the sequential
innovations detector (SID) with assumed gaussian distributions [6] to obtain the decision
function
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which is compared to a threshold.  The implementation of this monitor presents some basic
problems, but does illustrate a potential optimal solution to the model monitoring problem.
As mentioned, the SID requires a priori knowledge of the actual model "mismatch" and

structurally how it enters the propagation model to obtain [ eµ , eeR ] for the monitor.  

Next we consider the development a more practical statistical test for model mismatch,
the weighted sum squared residual (WSSR) test [6]. The WSSR statistic essentially aggregates
all of the information available in the innovation vector over some finite window of N samples.
It is defined by
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which is compared against a threshold.  In this case oH  is the hypothesis that there is no

model "mismatch" (white innovations), while 1H is the hypothesis that there is mismatch

specified by non zero-mean, non-white innovations.  



4. SIMULATION RESULTS

In this section we briefly discuss the results of execution the WSSR detector on
simulated shallow water data.  We assume a flat bottom, a range independent three layer
shallow ocean environment with a depth of 100m, a sediment depth of 2.5m, and a subbottom.
A vertical line array of 100 sensors spaced at 1m spans the entire water column and a
narrowband (100 Hz) source is located at a depth of 50 and a range of 0.5 Km.  Our normal
ocean environment is modeled by a far away source at 20Km synthesizing ambient noise at
the array. The parameters for the run were generated by the SACLANT normal-mode
simulator SNAP and the can be found in Ref. [4].  We show the results of the whiteness and
WSSR run for the normal and abnormal ocean.  Here we tuned (zero mean, white innovations)
the processor to the ambient ocean and then "listened" for changes.  The results are shown in
Fig. 3 below.  In Fig. 3a, we see the whiteness test indicating the zero-mean/white innovations
with the WSSR statistic lying below the threshold, while the results when a target approaches
the array at 0.5 Km clearly indicate a non-zero mean, non-white process with the WSSR
exceeding the threshold illustrating the point.
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Fig. 3: Normal/Abnormal SNAP Simulations: (a) Normal case: Zero-Mean/White (1.5e-
8<4.6e-8/0%) and WSSR below threshold. (b) Abnormal case: Zero-Mean/White (4.6e-

8<5.9e-8/0%) and WSSR exceeds threshold.
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